Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 64: e21200301, 2021. tab, graf
Article in English | LILACS | ID: biblio-1278443

ABSTRACT

Abstract Rhamnolipid is a potent biodegradable surfactant, which frequently used in pharmaceutical and environmental industries, such as enhanced oil recovery and bioremediation. This study aims to engineer Escherichia coli for the heterologous host production of rhamnolipid, to characterize the rhamnolipid product, and to optimize the production using autoinduction medium and POME (palm oil mill effluent). The construction of genes involved in rhamnolipid biosynthesis was designed in two plasmids, pPM RHLAB (mono-rhamnolipid production plasmid) and pPM RHLABC (di-rhamnolipid production plasmid). The characterization of rhamnolipid congeners and activity using high-resolution mass spectrometry (HRMS) and critical micelle concentration (CMC). In order to estimate rhamnolipid yield, an oil spreading test was performed. HRMS and CMC result show E. coli pPM RHLAB mainly produced mono-rhamnolipid (Rha-C14:2) with 900 mg/L and 35.4 mN/m of CMC and surface tension value, whereas E. coli pPM RHLABC mainly produced di-rhamnolipid (Rha-Rha-C10) with 300 mg/L and 34.3 mN/m of CMC and surface tension value, respectively. The optimum condition to produce rhamnolipid was at 20 h cultivation time, 37 oC, and pH 7. In this condition, the maximum rhamnolipid yield of 1245.68 mg/L using autoinduction medium and 318.42 mg/L using 20% (v/v) of POME. In conclusion, the characteristics of the rhamnolipid by recombinant E. coli is very promising to be used in industries as the most economical way of producing rhamnolipid.


Subject(s)
Palm Oil , Escherichia coli , Electromagnetic Phenomena , Glycosylation
SELECTION OF CITATIONS
SEARCH DETAIL